$4^{\text {th }}$ series

Date: $\quad 2^{\text {nd }}$ November 2015
Address: KMS - iKS
OATČ KAGDM FMFI UK
Mlynská dolina
84248 Bratislava
Slovakia
Problem G4. Let M be an arbitrary point on the side $B C$ of a triangle $A B C$. Let k be the circle that touches lines $A B, B M$ and the circumcircle of triangle $A M C$ at points T, K and P, respectively. Prove that if $T K \| A M$, then the circumcircles of $A P T$ and $K P C$ are tangent to each other.

Problem N4. Find all pairs of integers (x, y) such that

$$
x^{6}+x^{3} y=y^{3}+2 y^{2} .
$$

Problem C4. Find all real numbers $k \geq 1$, for which we cannot divide the rectangle $k \times 1$ into two similar non-congruent polygons.

Problem A4. A polynomial $P(x)$ of degree n with real coefficients has n distinct real roots. What is the maximum number of its coefficients which can be equal to zero?

