$3^{\text {rd }}$ series

Date: $\quad 23^{\text {rd }}$ September 2013
Address: Korespondenční seminář iKS
KAM MFF UK
Malostranské náměstí 25
11800 Praha 1
Czech republic
Problem C3. An equilateral triangle with sides of length n is filled with a triangular grid. A closed path travels along the grid, visiting each vertex of the grid exactly once. Prove that this path turns in an acute angle at least $n+1$ times.

Problem G3. In a tetrahedron $A B C D$, the sum of areas of its faces $A B C$ and $A B D$ is equal to the sum of areas of the faces $C D A$ and $C D B$. Show that the midpoints of the edges $A C, A D$, $B C, B D$ and the incenter of $A B C D$ lie in a single plane.

Problem A3. Given real numbers $x_{1}, x_{2}, \ldots, x_{n}$, show that for any non-empty subset $M \subset$ $\{1,2,3, \ldots, n\}$, the following inequality holds:

$$
\left(\sum_{i \in M} x_{i}\right)^{2} \leq \sum_{1 \leq i \leq j \leq n}\left(x_{i}+\cdots+x_{j}\right)^{2} .
$$

Problem N3. Find all positive integers n for which the sets of prime divisors of n and $2^{n}+1$ are identical.

