$1^{\text {st }}$ series

Date: $\quad 4^{\text {th }}$ May 2015
Address: Korespondenční seminář iKS
KAM MFF UK
Malostranské náměstí 25
11800 Praha 1
Czech republic

Problem N1. Does there exist an infinite progression of positive integers a_{1}, a_{2}, \ldots such that a_{i} and a_{j} are coprime if and only if $|i-j|=1$?

Problem A1. Patrik found n positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$. Show that he is able to choose n numbers $x_{1}, x_{2}, \ldots, x_{n}$ from the set $\{-1,1\}$ in such a way that the inequality

$$
\sum_{i=1}^{n} x_{i} a_{i}^{2} \geq\left(\sum_{i=1}^{n} x_{i} a_{i}\right)^{2}
$$

holds.

Problem C1. A square is cut into triangles in such a way that no two vertices of these triangles are collinear. For each vertex (including the original vertices of the square), we count the edges (sides of triangles) touching it. Can all those numbers be even?

Problem G1. In a non-equilateral triangle $A B C$, let's denote the circumcenter, incenter and incircle by O, I and k, respectively. Let t be the tangent of k parallel to $B C$ that doesn't contain $B C$. Let D and R be points on t such that D lies on $O I$ and $R I$ is perpendicular to $O I$. Show that the quadrilateral $R A D O$ is cyclic.

