

Úloha 1. An acute isosceles triangle $A B C(A B=A C)$ is inscribed in a circle with center O. Rays $B O$ and $C O$ intersect the sides $A C$ and $A B$ at B^{\prime} and C^{\prime}, respectively. A straight line ℓ parallel to $A C$ is drawn through C^{\prime}. Prove that ℓ is tangent to the circumcircle of triangle $B^{\prime} O C$.

Uloha 2. Each cell of a 100×100 board is painted either black or white such that all the cells adjacent to the border of the board are black. It turned out that no 2×2 square of the board is one-colored. Prove that there exists a 2×2 square with two diagonally touching black squares and two diagonally touching white squares.

Úloha 3. Initially, a positive integer n is written on the board. At any moment, Misha can choose any number $a>1$ on the board, erase it, and write on the board all the divisors of a, except for a itself (the same number can appear multiple times on the board). After a while it turned out that n^{2} numbers were written on the board. Find all n for which this could have happened.

