

Úloha 1. An acute isosceles triangle ABC (AB = AC) is inscribed in a circle with center O. Rays BO and CO intersect the sides AC and AB at B' and C', respectively. A straight line ℓ parallel to AC is drawn through C'. Prove that ℓ is tangent to the circumcircle of triangle B'OC.

Řešení. Let ℓ and AO meet at T. By symmetry and parallel lines we have $\angle B'TO = \angle C'TO = \angle OAC = \angle ACO = \varphi$, hence T lies on the circumcircle of triangle B'OC. Similarly, $\angle OB'T = \angle OC'T \angle ACO = \varphi$, hence $\angle OB'T = \angle C'TO$ as desired.

Úloha 2. Each cell of a 100×100 board is painted either black or white such that all the cells adjacent to the border of the board are black. It turned out that no 2×2 square of the board is one-colored. Prove that there exists a 2×2 square with two diagonally touching black squares and two diagonally touching white squares.

Řešení. Assume otherwise and consider segments of the grid that separate two squares of different colors. Call such segments "separators". It's easily checked that by assumption, each 2×2 square contains 2 separators. Moreover, each separator is contained in precisely two 2×2 squares (no separators are adjacent to the boundary). Thereofore the number of separators is the same as the number of 2×2 squares, that is 99^2 . On the other hand, each row and column contains an even number of separators, a contradiction.

Úloha 3. Initially, a positive integer n is written on the board. At any moment, Misha can choose any number a > 1 on the board, erase it, and write on the board all the divisors of a, except for a itself (the same number can appear multiple times on the board). After a while it turned out that n^2 numbers were written on the board. Find all n for which this could have happened.

Řešení. The only solution is n = 1. Recall that

$$\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n} < 1$$

since 1/(t(t+1)) = 1/t - 1/(t+1).

We proceed by induction. The base case is trivial. Let $1 = d_1 < d_2 < \cdots < d_{k+1} = n$ be all the divisors of n. Erase n and replace it by all its divisors. By induction, there can't be more than $d_1^2 + d_2^2 + \cdots + d_k^2$ numbers on the board. Note that if t is a divisor of n then so is n/t. Hence we can rewrite

$$d_1^2 + d_2^2 + \dots + d_k^2 = \frac{n^2}{d_{k+1}^2} + \frac{n^2}{d_k^2} + \dots + \frac{n^2}{d_2^2} \le \\ \le n^2 \left(\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}\right) < n^2 \cdot 1 = n^2$$

and conclude.